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SUMMARY 
A numerical study of confined jets in a cylindrical duct is carried out to examine the performance of two 
recently proposed turbulence models: an RNG-based K-E model and a realizable Reynolds stress algebraic 
equation model. The former is of the same form as the standard K-E model but has different model 
coefficients. The latter uses an explicit quadratic stress-strain relationship to model the turbulent stresses 
and is capable of ensuring the positivity of each turbulent normal stress. The flow considered involves 
recirculation with unfixed separation and reatachment points and severe adverse pressure gradients, thereby 
providing a valuable test of the predictive capability of the models for complex flows. Calculations are 
performed with a finite volume procedure. Numerical credibility of the solutions is ensured by using 
second-order-accurate differencing schemes and sufficiently fine grids. Calculations with the standard K-E 
model are also made for comparison. Detailed comparisons with experiments show that the realizable 
Reynolds stress algebraic equation model consistently works better than does the standard K-E model in 
capturing the essential flow features, while the RNG-based K-E model does not seem to give improvements 
over the standard K-E model under the flow conditions considered. 
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1. INTRODUCTION 

The flow configuration considered in this paper is sketched in Figure 1. It involves an inner 
high-speed round jet and a slowly moving annular stream, both interacting with each other. 
Because of turbulent entrainment, the jet increases its mass flux while spreading. This must be 
balanced by an equal decrease in the mass flux of the ambient flow. The decrease in the ambient 
velocity thus sets up an adverse pressure gradient which in turn affects the evolution of the flow. 
Depending on the ratio of jet to ambient velocities at the entrance, two different flow regimes 
occur in the downstream region: if the ratio is small, the jet cannot consume all the ambient 
flow before reaching the duct wall, so the flow remains unseparated; if the ratio is large, the 
opposite happens and further entrainment must create reverse flow to maintain the total mass 
flux conservation. Further downstream the flow completely loses its jet characteristics and 
degenerates eventually to the fully developed regime if the duct is long enough. These flow 
features can be found in many engineering apparatuses involving two flows of differing velocities, 
in particular in combustion chambers and ejectors. Therefore the understanding of confined jet 
flows is of great interest in engineering applications. 

From a turbulence-modelling point of view, the confined jet flow also constitutes a valuable 
test owing to its complicated flow features. It is noted that the flow past a backward-facing step 
is a standard test problem to benchmark the performance of turbulence models in complex 
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Figure 1. Flow configuration and notations 

flows. The confined jet flow has features similar to those found in the backward-facing step flow, 
such as recirculation with an unfixed reattachment point and severe adverse pressure gradient, 
and adds additional complexities arising from the motion of the separation point. 

Numerical calculations of confined jets have been reported by Gosman et ul.,’ Habib and 
Whitelaw,’q3 Jones and Marquis: Khalil et al.’ and Zhu.6 In these calculations, turbulence 
effects were represented either by the K-E model or by second-moment closures. However, the 
previous calculations were all made on very coarse grids and with the hybrid central/upwind 
scheme,’ which is highly diffusive in the presence of both convective dominance and flow-to-grid 
skewness. Therefore they might largely be contaminated by numerical diffusion and the results 
are far from conclusive. 

The purpose of the present study is to assess the performance of two recently developed 
turbulence models in the confined jet flow. The models considered here are the RNG-based K-E 
model used by Speziale and Thangam* and the realizable Reynolds stress algebraic equation 
(RRSAE) model: both within the framework of the two-equation formulation. The RNG-based 
K-E model is of the same form as the standard K-E model” but assumes different model 
coefficients which are evaluated by the theory. In the original version of the RNG K-E model 
all the coefficients had constant values which have been shown by Speziale and Thangam’ to 
be inappropriate. In the latest version of the RNG K-E model* the model coefficient related to 
the production-of-dissipation term in the &-equation is a function of q, where q is the time scale 
ratio of the turbulent to mean strain rate. In the RRSAE model the Reynolds stresses are 
calculated by a quadratic stress-strain relation. All the model coefficients in this relation are 
determined from the realizability analysis so that the model ensures the positiveness of the 
turbulent normal stresses. 

The test problem to be considered is taken from the experiment of Barchilon and Curtet,’ 1*12 

which provides detailed experimental data. The flow can be characterized by the Craya-Curtet 
number C,, which is the inverse square root of the total momentum, non-dimensionalized with 
the volume flux and the duct area.13 The experiment showed that recirculation occurs when 
C, < 0.96. Calculations are carried out with a conservative finite volume method and on a 
numerically accurate basis. As a common practice, the calculation with the standard K--E model 
is also included for comparison. Detailed comparison with experiments at five C,-values clearly 
reveal the predictive capabilities of the models in these flows of great practical importance. 
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2. MATHEMATICAL FORMULATION 

2.1. Governing equations 

Incompressible, steady state, turbulent flows are governed by the Reynolds-averaged contin- 
uity and Navier-Stokes equations. In the polar-cylindrical co-ordinate system (x ,  r) shown in 
Figure 1, the conservative form of these equations can be written as 

where U and V are the axial and radial velocities respectively, p is the pressure, v is the kinematic 
viscosity and p is the density. The Reynolds stresses 'cij in (2) and (3) are calculated by using the 
following three turbulence models. 

Standard K--E model" 

K2 
v,  = c, -, 

P & 
' = v,(UiSj + U j , i )  - $Kbi j ,  (4) 

where G is the production term of the turbulent kinetic energy, 

the velocity gradients U i .  are calculated by 

(8) 
au av V au av 

u2.1 =- ax ax u1.1 = - 9  u2,2 = 5' u 3 . 3  = - 1  u1.2 =-.$ r 

and the model coefficients are 

c, = 0.09, c1 = 1.44, C2 = 1.92, OK = 1, U, = 1.3. (9) 
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RNG K-E model.* This is of the same form as the standard K-E model but uses the coefficients 

C, = 0.085, Cl = 1.42 - C2 = 1.68, bK = 0, = 0.7179, (10) tl(1 - tl/4-38) 
1 + 0 0 1 5 ~ ~  ’ 

where 

s = (2SijSij)1’2, sij = #Iiaj + UjJ). 
K S  q = -  

E 

RRSAE modeP 

where 

213 
A1 + t l + Y t ’  

c, = 

KR r = -  R = (2n3n5,’”, n; = ( U i a j  - UjJ/2 + 4EmjiW,, 
E 

w, is the rotation rate of the reference frame and the model constants are 

c,, = -4, Cr2 = 13, c,, = -2, A ,  = 1OOo. (17) 

In the work of Shih el aL9 and Zhu and ShihI4 the following two sets of values for A ,  and y 
were tested: 

A, = 5.5, Y = 0, (18) 

A, = 1.25, = 0.9. (19) 

Both of them have been found to give almost identical predictions for the two backward-facing 
step flows. With (19), the rotational effect of the mean flow enters into C,. However, we have 
found in the present work that the values in (18) work better for the axisymmetric confined jets. 
Therefore the values in (18) are taken here. The K and E in the RRSAE model are calculated 
with the same equations as in the standard K-E model. 

2.2. Boundary conditions 

Four types of boundaries are present in the calculation, namely the inlet, outlet, axis of 
symmetry and solid wall. Among them, the inlet boundary conditions demand special attention 
because they have a considerable influence on the calculations.’ 5*16 Table I gives the inlet jet 
and ambient velocities taken from the experiment of Barchilon and Curtet.” 
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Table I. Inflow conditions 

c, U, (cm s- ' )  U, (cm s- ' )  

0.976 1293-6 84.48 
0.714 1298.9 6072 
0.506 1253.8 39.8 1 
0.305 1282.1 21.86 
0,152 1296.2 7.42 

The Craya-Curtet number C, is calculated by 

urn c, = 
[( U,Z - Uf)(dJDJ2 + (Ut - U:)/2] 

' 

where Do = 16 cm, do = 1.2 cm and U ,  is the mean velocity of the section, 

In the potential core and the ambient region (Figure 1) the velocities are uniform and the 
turbulence level is very low, so the flow may be treated as potential. However, between the 
potential core and the ambient region there exists a thin shear layer from which the turbulent 
entrainment develops. The specification of the boundary conditions in this layer is non-trivial. 
In this work the parabolic entrance region (PER) scheme of Zhu et a1." is used. The PER 
scheme, which allows the fine resolution of the initial shear layer, was developed on the 
assumption that although the flow as a whole is elliptic, there exists a short region near the 
entrance where the flow is parabolic. A parabolic calculation is first carried out over a short 
distance between x = 0 and x, ,  by using the mixing length model 

where rl  and rz are the co-ordinates of the inner and outer edges of the initial shear layer 
respectively (Figure 1) and C is an empirical coefficient given by 

C2 = 0.0042 + 0.004U JUj, 0 < U JVj < 0.2. (23) 

The results of the parabolic calculation are then used as the inlet conditions at x = x, for the 
elliptic calculation. The inlet values of K and E are calculated by 

K = -iiij/0.3, E = 0.WK2/v,. (24) 

It was found6 that the PER scheme gives satisfactory predictions in the parabolic entrance region 
and the elliptic calculations were insensitive to x ,  provided that 1 c x,/d, < 3. 

The outlet boundary is placed at x = lOD,, where fully developed flow conditions are assumed. 
Along the axis of symmetry the normal velocity component and the normal gradients of the 
other variables are set to zero. The standard wall function approach'' is used to handle the wall 
boundary conditions. 
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2.3. Numerical procedure 

The transport equations (1)-(3), ( 5 )  and (6) can be written in the general form 

where 4 stands for U, V ,  K and E,  and To and S, are the corresponding diffusive coefficient 
and source term respectively. For the momentum equations (2) and (3), S, also includes the 
cross-derivative diffusion terms and the quadratic terms qj in (14). 

The system of equations (25) is solved with the finite volume approach. It uses non-staggered 
grids with all the dependent variables being stored at the geometric centre of  each control 
volume. The velocity-pressure coupling is  handled with the momentum interpolation procedure 
of Rhie and Chow” and the SIMPLEC algorithm of Van Doormal and Raithby.’* To ensure 
both accuracy and stability o f  numerical solutions, the hybrid linear/parabolic approximation 
(HLPA) scheme” is used to approximate the convection terms o f  (25). It has been shown2’ that 
the HLPA scheme o f  second-order accuracy works nearly as well as the third-order-accurate 
SMART2 and SHARPZ2 schemes in eliminating the numerical diffusion while retaining the 
boundedness of numerical solutions. Consider a typical control volume centred at node C as 
shown in Figure 2. The HLPA scheme evaluates the value of 4 at the cell face ‘w ’  as 

4, = u:4w + K 4 c  + A 4 w .  (26) 

where 

4w - 4 w w  
4c - 4 w w  

4c - 4 E  
4W - 4 E 1  A 9 w  = u c ( 9 c  - 9 w )  + K a 3 w  - 4c) 

1 
0 otherwise 

ifl9c - 2 4 w  + 4wwl< I 9 c  - 4WWI9 

i f l 9 w  - 24c + 9 E I  < 14w - 9 E L  1 
0 otherwise. 

I a: = 

a; =I 

lSS 
Figure 2. Control volume and related nodes 



CONFINED COFLOW JETS 945 

It can be seen that (26) is in fact the result of the first-order upwinding UG&, + U;& with an 
additional term A 4 w  added. The additional term may be viewed as an antidiffusive correction 
to the upwind scheme. The conventional central differencing scheme is used to approximate all 
other terms. The resulting discretized counterpart of (25) can be cast into the linearized form 

A& = A& + S, i = W, E, S, N. 

In formulating this equation, the convection terms calculated by the upwind scheme are coupled 
with the normal diffusion terms to form the main coefficients Ai,  while those calculated by (27) 
are included in the source term S. In this way the positivity of all the main coefficients is ensured 
so that the resulting coefficient matrix will always be diagonally dominant. The system of 
equations (31) is solved with the strongly implicit solution algorithm of Stone.23 The calculation 
results are considered converged when the maximum normalized residue of all the dependent 
variables is less than 0.5%. The details of the present numerical procedure are given in References 
24 and 25. 

3. APPLICATION 

All calculations were performed on the Cray YMP computer. The grid dependence of solutions 
was first examined by using two convection schemes, HLPA and HYBRID (central/upwind 
differencing), and three grids consisting of 50 x 40 (grid l), 86 x 50 (grid 2) and 120 x 80 (grid 
3) points respectively. The HYBRID scheme, which is highly diffusive in the presence of both 
convective dominance and flow-to-grid skewness, has been used here mainly to highlight the 
importance of using higher-order-accurate schemes. Test results obtained with the RRSAE model 
at C,  = 0.506 are shown in Figure 3(a) for the axial velocity U-profiles, normalized by the mean 
velocity of the section, U,, and in Figure 3(b) for the turbulent shear stress =-profiles, both at 
the same downstream location x / D ,  = 1-875. It can be seen that the results of HLPA on the 
coarse grid 1 are already very close to those on the fine grid 3 for both the U -  and E-profiles, 
while significant differences exist between the corresponding results of HYBRID. The HLPA 
results on the intermediate grid 2 can be considered as grid-independent, because the refinement 
from grid 2 to grid 3 produced differences too small to be seen on the graph. The HYBRID 
solutions, however, responded to the grid refinement in such a slow manner that they still had 
not reached the grid-independent stage on the finest grid. The number of iterations and the 
CPU time in minutes required for the calculations with HLPA were respectively 196 and 0.2 
on grid 1, 640 and 1.4 on grid 2 and 1874 and 9.3 on grid 3. The calculations with HYBRID 
took about 06-04 of these numbers. Grid 2 and HLPA were used for all subsequent calculations. 

Figure 4 shows the variation in the centreline velocity U ,  with x and C,. It clearly reveals the 
existence of the potential core characterized by the constant U ,  in the near-entrance region. 
Beyond the potential core U ,  decayed quickly, especially at small values of C,. Both the SKE 
model and the RNG model predicted the same potential core length, which was shorter than 
that predicted with the RRSAE model at all C,-values. Since this length cannot be precisely 
determined from the first and second experimental points at each of C,, it is difficult to judge 
which model gives the better initial decay ( x / D ,  < 1). For the ensuing decay the RRSAE model 
gave the best agreement with the experiment while the RNG model produced large under- 
predictions. Figures S(akS(c) show the axial mean velocity profiles at three C,-values. All three 
models are seen to predict very well the upstream evolution of the flow. As for the downstream 
development, the results obtained with the RRSAE model remained in good agreement with 
experiments, while those obtained with the other two models deteriorated, with the RNG model 
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--- Grid 3, HYBRID 
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Figure 3. Grid sensitivity test at C, = 0506 

producing the largest discrepancies. The variation in the ambient velocity U, with x and C, is 
shown in Figure 6. In the recirculation region the ambient velocity has no physical meaning 
and is defined as the minimum velocity (Figure 1) for analytical convenience. The location where 
U ,  is equal to zero corresponds to the separation or reattachment point. At C, = 0.976 the 
calculated results are shown only up to x / D ,  = 1.875, because the calculated U-profiles have no 
uniform portion after this point (Figure 5(a)). The calculated curves follow quite well the 
experimental data upstream of the separation at all C,-values. The deviation occurs in the 
recirculation region. It should be pointed out that in the recirculation region the computed 
velocity minima are all very close to the duct wall, where the use of the wall function as the 
boundary condition may constitute a source of error. It is also to be noted that Figure 6 
highlights considerably the difference between the computed and measured U-profiles in the 
near-wall region. The difference shown in Figures 5(b) and 5(c) is not significant as in Figure 6. 
Therefore the RRSAE model result should be considered as satisfactory. 

The jet spreading can be characterized by the excess flow rate Qj and the effective width 1. 
These are defined by 

Figures 7 and 8 show the variation in Qj/Q and l /R  respectively with x and C,, where Q and R 
are the total flow rate and the radius of the duct respectively. As a result of the turbulent 
entrainment, the excess flow rate first increases, reaches a maximum at the recirculation centre 



CONFINED COFLOW JETS 941 

20 

10 

0 
20 

10 

0 
30 

E 20 3 
\ 

3 10 

0 
50 

25 

0 

75 

50 

25 

0 

I " " " " ' " ' " " " ' 1  

RRSAE 

l " " l " " i " " l " " 1  

0 1 2 3 

x/Do 

4 

Figure 4. Centreline velocity decay 
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Figure. 6. Ambient velocity (notation as in Figure 4) 
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Figure 9. Streamlines 
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where U ,  has a minimum and then decreases. This variation becomes more marked as C, 
decreases. Recirculation occurs when Qj is larger than Q. It can be seen from both figures that 
the calculations agree well with the experiments at larger C,, but the agreement deteriorates as 
C, decreases. It should be pointed out that the excess flow rate, owing to its definition, is a 
quantity that is highly sensitive to the errors in the velocity profiles, so that a small change in 
U ,  , especially in the recirculation zone, will result in a large difference in Qj. Furthermore, the 
experimental uncertainty in the recirculation region in which the flow is highly perturbed is 
likely to be greatest. With due regard to these factors, the agreement between the calculations 
and experiments can be regarded as reasonably good. Regarding the comparison among the 
three models, the RRSAE model again performs the best for both the excess flow rate and the 
effective width. 

Figures 9(a) and 9(b) show the predicted streamlines at C,  = 0.714 and 0.152 respectively. 
These figures convey an overall view of the flow pattern. The upstream ambient flow was sucked 
in by the jet owing to the turbulent entrainment. At C, = 0.714 a small recirculating bubble 
adhering to the duct wall occurred at the downstream location. When C, was reduced to 0.152, 
the recirculating bubble became very large, filling most of the duct cross-section. The separation 
and reattachment points of the predicted recirculating bubbles are compared with the experi- 
mental data in Figure 10. The experiment indicated that as C, decreased, the separation point 
moved upstream while the reattachment point remained practically unchanged. The comparison 
shows that the RRSAE model gives the best predictions for both the separation and reattachment 
points. 

Figure 11 shows the variation in the recirculating flow rate with x at C, = 0-305 and 0.152. 
This is the integral of negative velocities in each cross-section. The experiment indicated that 
the recirculating flow rate at C, = 0152 is about three times larger than that at C, = 0305. The 
results of the RRSAE model are in good agreement with the experiment, while those of the 
standard K--E model and the RNG model have substantial discrepancies. As for the maximum 
recirculating flow rate, which is a critical parameter to characterize the performance of 
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Figure 1 1 .  Recirculating flow rate (notation as in Figure 4) 

combustion chambers, the RRSAE model gave the same result as the experimental data at  
C,  = 0.305 and a 9% overprediction at C,  = 0.152, while the other two models produced larger 
overpredictions. It should be pointed out that results from different measurements1 for this 
quantity showed considerable scatter at small C,-values. The results of all three models are 
within the experimental scatter. 

The variation in pressure coefficient C ,  along the duct wall is shown in Figure 12, where C,  
is defined by 

and Ap is the pressure difference relative to the entrance. In the cylindrical duct the evolution 
of the pressure is governed by the jet entrainment as well as the contraction and expansion of 
the flow caused by the recirculating bubble. The decrease in the ambient velocity (Figure 6) 
induced by the entrainment gives rise to an adverse pressure gradient, while the contraction of 
streamlines produces the opposite effect. These two mechanisms interact more intensely with 
each other as C,  decreases, causing the pressure to vary little in the region upstream of the centre 
of the recirculating bubble. In the downstream part of the recirculating bubble the deceleration 
of the flow sets up an adverse pressure gradient, the slope of which becomes steeper as C,  
decreases. Therefore the ability to capture the location of the recirculation centre will have a 
direct impact on the prediction of the pressure. By comparing Figure 12 with Figure 6, it can be 
seen that the three models capture the steep pressure gradients in the same way as they capture 
the ambient velocity minima. However, for the total pressure rise, an important parameter to 
the designer of jet pump devices, all three models are seen to give the same results, which are 
in excellent agreement with the measurement. 
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4. CONCLUSIONS 

A numerical study has been performed to assess two recently proposed turbulence models for 
confined jet flows. In order for the calculation to reflect the real performance of the models, an 
effort has been made to reduce numerical errors arising from the inlet boundary condition and 
numerical discretization. The detailed comparison with the experiment definitively establishes 
the superiority of the RRSAE model over the standard K--E model in so far as the confined jet 
problem is concerned. However, this is not true for the RNG model at all the values of C, 
considered. 
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